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Electron transport in quantum devices is governed by discrete quantum states due to electron
con�nement. A crucial requirement for the modeling of quantum devices is the the numerical
identi�cation and resolution of these quantum states. We present an algorithm utilized in our
general purpose quantum device simulator, where we locate the resonances of the system �rst and
then generate the optimized grid used to integrate over the resonances. We �nd this algorithm
important in the modeling of coherent transport involving ultra�ne resonances and crucial for the
modeling of incoherent transport.

I. INTRODUCTION

One major problem in the development of a high bias current-voltage simulator for quantum devices is the resolution
and treatment of resonant states. The resonance states strongly in
uence the transmission through and the scattering
in the device. To calculate observables like the current and the charge at high bias we have to integrate in energy
(and/or momentum) over these resonances. These resonance states are as sharp as 1neV-5meV in an energy range
of 0-1000meV spanned by the applied bias. A homogeneous energy grid resolution of 1�eV over an energy range of
1000meV would require 1,000,000 nodes which is unfeasible for our purposes, where a single integration point may
be very expensive to compute, or the storage of all integration points is necessary. Since there are only few sharply
varying features the numerical analysis should be carried out on a well optimized inhomogeneous energy grid. In
addition to the sharp quantum features we have to resolve more smoothly varying features such as the lead carrier
distributions of 5meV-50meV with a temperature dependent modulation 0.3meV-25meV. Figure (1a) illustrates these
spectral features for the case of a typical resonant tunneling diode.

II. PROBLEMS WITH THE STANDARD PROCEDURE

The standard1 solution to this problem of integration over sharply varying integrands is the sucessive partitioning
of the integration range. An adaptive grid is constructed by adding nodes within the integration range of interest as a
test of the integration convergence. While this trial and error method is foolproof as long as the convergence criteria
are stringent enough, it does have 2 conceptual drawbacks.

1. The optimization is based on a relative error analysis. I.e. the improvement of the integrand due to adding a node
is measured in the small integration segment, rather than the overall integral. The requested relative accuracy
is therefore not in direct relation to the absolute accuracy of the integral. The procedure will resolve curvature
features well, however it will also place many nodes in energy ranges where the total integral contribution is
insigni�cant. An optimization procedure minimizing the absolute error is more desirable to avoid the calculation
of insigni�cant integral contributions.

2. Nodes are added as a pure test whether they are needed for the integration or not. Adding nodes in an
integration can complicate algorithms dramatically, if other quantities which depend on the integral and modify
the integrand are to be updated as well. For vectorization purposes we prefer to deal with �xed grids.

III. THE NEW ALGORITHM

The expensive task in the sucessive partitioning approach is the locating of the resonances. If we would know
where the resonances were, we could conceive of a method to place an inhomogeneous grid smartly. Resonance �nding
algorithms for single band2 and multi band3 have been developed and we use them as part of our �xed grid generation.
These algorithms return the eigenvalues (Er � i�) of the single electron tight binding Hamiltonians describing the
quantum device. The location, Er, and width, �, of the resonant states in the device lays the foundation for the
generation of a grid that resolves these features well.
For numerical stability in terms of round o� errors we would like the integration contribution from one energy node

to the next to be about the same. This suggests a very simple scheme which lets us optimize the energy grid with
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FIG. 1. Construction of an inhomogeneous energy grid using the location of spectral features. (a) Schematic conduction
band pro�le of a resonant tunneling diode. The inserted panels indicate the spatial and energetic location of spectral features
that we wish to resolve: localized resonances, Fermi factors and conduction band edges. (b) Spectral features on one energy
axis. In addition to (a) we show the real part of the retarded Green function (principal value integral of a Lorentzian). (c)
The single spectral features in (b) can be integrated analytically to obtain a monotonic function. An optimized inhomogeneous
energy grid can be obtained by projecting a homogeneous grid from the y-axis of the monotonic function onto the energy axis.
The projection scheme to obtain a �xed energy grid was inspired by class notes of Prof. J. Gray in the School of Electrical
Engineering at Purdue University.

respect to integral quantities. The integral over a spiked function is a monotonic increasing function. Figure (1b)
indicates how a homogeneous grid on the abscissa of a monotonic function projects to an inhomogeneous grid on the
ordinate. The question now remains how we get the monotonic functions of the right shape.
Close to the resonance we can approximate the density of states � 1

�
IMGR where GR is the retarded Green function3

by a Lorentzian at energy Er and width �. The real part of GR is proportional to the principal value integral of that
Lorentzian. The integral over the Lorentzian function and the principal value integral can be performed analytically
resulting in monotonic functions mIM (E) and mRE (E). The real part of GR is doubly peaked at Er� �

2
. We enhance

the resolution of the resonance by placing two monotonic contributions mRE�IM corresponding to mIM (E) at the
energies Er � �

2
with a width �0=(

p
3� 1)�

2
.

IV. OTHER SPECTRAL FEATURES

Several other spectral features need to be resolved as well, aside from the sharply peaked resonances. The density
of states around the conduction band edge varies sharply with respect to energy. We have optimized this turn-on
using three di�erent distributions: 1) a 1=

p
E distribution convolved with a Lorentzian, 2) a triangular distribution,

and 3) a homogeneous distribution around the conduction band edge. We �nd that the homogeneous contribution
around the conduction band edge provides an adequate resolution of the density of states at the conduction band
edge. The integral contributions to the density of states at the band edges is modeled by the monotonic function
mband�edge. The variations in the Fermi occupation factor, f , in the contacts are resolved in a similar manner noting
that mfermi = 1�f is an analytic and monotonic growing function. To resolve turn-ons of the Fermi distribution we
optimize the energy grid with respect to the fourth derivative of f resulting in another monotonic contributionmfermi0 .
Given the individual contributions we can build an analytic monotonic function m(E) = x1mIM (E) + x2mRE (E) +
x3mRE�IM (E) + x4mband�edge + x5mfermi + x6mfermi0 where xi are weighing parameters. The monotonic function
m(E) can be evaluated "cheaply" for any E and can be inverted to a homogeneous grid in y = m(E) numerically.

V. PERFORMANCE CHECK

As a comparison we perform here the integration over the real and the imaginary part of 2 narrow resonances
(�=0:5�eV ) at Er=100meV and Er=300meV placed in a wide energy range of 1000meV (see inset of �gure (2a)).
We perform the numerical integration in four di�erent schemes: 1) our new �xed energy grid with trapezoidal
integration (see Fig. (2a)), 2) our new �xed energy grid with Simpson integration (see Fig. (2b,c)), 3) a typical
adaptive grid scheme with trapezoidal integration (see Fig. (2a,b)), and 3) a typical adaptive grid scheme with
Simpson integration (see Fig. (2c)). Figure (2) shows clearly that we typically obtain a savings of integration nodes
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of a factor of k � 4� 10. Depending on the calculation that has to be performed the number of operations may scale
as k1 � k3 and the required memory scales as k1 � k2.
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FIG. 2. We integrate the real and imaginary part of two resonances located at about 100 meV and 300 meV, respectively,
each with an energy width of 0.5 �eV. The energy range of integration is 0-1 eV (see inset in a). (a) trapezoidal integration
using the �xed and the adaptive grid. The dashed line indicates the requested relative accuracy of the adaptive grid. (b)
Simpson integration using the �xed grid compared to trapezoidal integration on an adaptive grid. (c) Simpson integration
with the �xed grid and the adaptive grid. For the �xed grid we show the relative errors of the imaginary part and the real
part integral separately. For the adaptive grid approaches we show the maximum error. The dashed lines indicate the relative
precision speci�ed in the adaptive grid approaches.

The drawback of the adaptive schemes are that they have to "home in" on the resonances, which pushes the number
of integration nodes up. The drawback of the �xed energy grid scheme described here is that we have to perform
the resonance �nding �rst. Single band resonance �nding2 scales as N2 and multiband resonance �nding3 scales
superlinear in N where N is the number of tight binding spatial nodes in the device. The recursive Green function
algorithm4 which can deliver the density of states and the transmission throughout the device scales as N . For the
modeling of coherent transport5 with not too sharp resonances (�> 1�eV ) we �nd the adaptive grid optimization
outperformes the �xed energy grid scheme including resonance �nding. However in cases where the resonances are very
sharp (�<1�eV ) our new scheme outperforms the usual adaptive scheme. For the modeling of incoherent transport6

where we include acoustic and polar optical phonons, alloy disorder scattering and interface roughness scattering we
�nd our �xed energy grid scheme essential. In this case we have to perform multidimensional, coupled integrals, where
intermediate results have to be stored and we �nd ourselves severely limited by memory requirements of 400-500MB
on a workstation. Another drawback of the �xed grid scheme presented here is that the integration accuracy cannot
be speci�ed a priori. Note, however that the relative accuracy speci�ed in the standard adaptive schemes does not
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correspond to the absolute accuracy (Fig. 2). The standard adaptive scheme can easily miss resonances completely
and it often turns out to be an \all or nothing approach". With respect to accuracy we sometimes �nd it useful to
mix the two approaches, where the �xed grid serves as a starting point of adaptive grid integration.
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